

Foliar applied potassium nitrate stimulated square development in cotton

Although the application of foliar $\mathrm{KNO_3}$ has been shown to increase the number of squares, it was uncertain whether this effect was due to the $\mathrm{K^+}$ or the $\mathrm{NO_3}^-$. Therefore a study was conducted in the USA to evaluate the influence of different foliar-applied salts on square development of two cotton varieties that differ in maturity and root morphology. Plants were transferred to a K-free nutrient solution 21 days after planting and one of the following salts, $\mathrm{KNO_3}$, $\mathrm{K_2SO_4}$ or $\mathrm{NH_4NO_3}$ was foliar applied at an equivalent rate of 11,2 kg/ha $\mathrm{KNO_3}$. Control plants were applied with an equivalent volume of water without nutrients. The experiment was conducted in a randomized complete block design with three replications. The foliar treatment of $\mathrm{KNO_3}$ increased the number of squares by 31% compared to the control, 29% compared to $\mathrm{K_2SO_4}$ and 49% compared to $\mathrm{NH_4NO_3}$ (Figure 1). This finding suggests that $\mathrm{K^+}$, not $\mathrm{NO_3}$ is responsible for the improved square development with foliar-applied $\mathrm{KNO_3}$. Application of $\mathrm{KNO_3}$ several days before square development resulted in increased square number if K is limiting. Potassium nitrate outperformed other salts in foliar application where a response to K is desired.

Figure 1. Effect of foliar treatments on square formation in cotton. Means followed by the same letter are not significantly different at P=0.05 using protected LSD.