Bell pepper phenological phases and their specific nutrition requirements Optional mineral nutrition schedule for greenhouse- soil-grown pepper at expected yield of 100 MT/ha. | Phenological stage
Fase fenológica | Days after
transplanting
Días después de
transplante | Physical
Tasas d | applicat
e aplicac | ion rates
ión física | Proportional application rates
Tasas de aplicación física | | | | | |--|---|------------------------------|-----------------------|--------------------------------------|--|------------------------------|-------------------|--------------------------------------|--------------| | Transplant establishment Establecimiento de transplante | 0 - 35 | N
K ₂ O
MgO | 2
3
1 | P ₂ O ₅
CaO | 0 2 | N
K ₂ O
MgO | 1
1,5
0,7 | P ₂ O ₅
CaO | 0 | | Vegetative growth
Crecimiento vegetativo | 36 - 55 | N
K ₂ O
MgO | 7
16
3 | P ₂ O ₅
CaO | 1
7 | N
K2O
MgO | 1
2,29
0,43 | P ₂ O ₅
CaO | 0,14
1 | | Flowering, fruit-set
Floración, cuajado | 56 - 70 | N
K ₂ O
MgO | 18
34
7 | P ₂ O ₅
CaO | 3
15 | N
K ₂ O
MgO | 1
1,89
0,39 | P ₂ O ₅
CaO | 0,17
0,83 | | Fruit development
Desarrollo de la fruta | 71 - 85 | N
K ₂ O
MgO | 20
72
21 | P ₂ O ₅
CaO | 3
42 | N
K ₂ O
MgO | 1
1,95
0,3 | P ₂ O ₅
CaO | 0,15
0,75 | | 1° wave of fruit maturation
1° ola de maduración de
la fruta | 86 - 100 | N
K ₂ O
MgO | 39
72
21 | P ₂ O ₅
CaO | 12
42 | N
K ₂ O
MgO | 1
1,85
0,54 | P ₂ O ₅
CaO | 0,31
1,08 | | 1° harvest wave
1° ola de cosecha | 101 - 120 | N
K ₂ O
MgO | 55
110
23 | P ₂ O ₅
CaO | 11
22 | N
K ₂ O
MgO | 1
2
0,42 | P ₂ O ₅
CaO | 0,2
0,4 | | 2° wave of fruit maturation
2° ola de maduración de
la fruta | 121 - 140 | N
K2O
MgO | 75
96
20 | P ₂ O ₅
CaO | 22
28 | N
K2O
MgO | 1
1,28
0,27 | P ₂ O ₅
CaO | 0,29
0,37 | | 2° harvest wave
2° ola de cosecha | 141 - 165 | N
K2O
MgO | 79
490
111 | P ₂ O ₅
CaO | 71
173 | N
K2O
MgO | 1
1,52
0,38 | P ₂ O ₅
CaO | 0,24
0,53 | | Total application rate (kg/hc
Tasa de aplicación total (kg/ | | N
K ₂ O
MgO | 295
490
111 | P ₂ O ₅
CaO | 71
173 | N
K ₂ O
MgO | 1
1,66
0,38 | P ₂ O ₅
CaO | 0,24
0,59 | Rounded figures of nutrient requirements at different fruit yields. | Expected yield (mt/ha)
Rendimiento esperado
(tm/ha) | Removal by the fruits (kg/ha)
Eliminación de nutrientes de las frutas
(kg/ha) | | | | | Uptake by whole plant (kg/ha)
Absorción por toda la planta (kg/ha) | | | | | |---|---|-------------------|--------------------------------------|-----------|----------------------|---|------------|--------------------------------------|------------|-----------------------| | 25 | N
CaO | 50
12 | P ₂ O ₅
MgO | 15
7 | K ₂ O 87 | N
CaO | 140
107 | P ₂ O ₅
MgO | 35
32 | K ₂ O 201 | | 50 | N
CaO | 100
25 | P ₂ O ₅
MgO | 30
15 | K ₂ O 175 | N
CaO | 221
153 | P ₂ O ₅
MgO | 57
49 | K ₂ O 330 | | 75 | N
CaO | 150
37 | P ₂ O ₅
MgO | 45
22 | K ₂ O 262 | N
CaO | 303
198 | P ₂ O ₅
MgO | 79
64 | K ₂ O 457 | | 100 | N
CaO | 200
50 | P ₂ O ₅
MgO | 60
30 | K ₂ O 350 | N
CaO | 384
244 | P ₂ O ₅
MgO | 101
81 | K ₂ O 585 | | 125 | N
CaO | 250
62 | P ₂ O ₅
MgO | 75
37 | K ₂ O 437 | N
CaO | 466
290 | P ₂ O ₅
MgO | 123
97 | K ₂ O 712 | | 150 | N
CaO | 300
<i>7</i> 5 | P ₂ O ₅
MgO | 90
45 | K ₂ O 525 | N
CaO | 547
336 | P ₂ O ₅
MgO | 145
114 | K ₂ O 841 | | 175 | N
CaO | 350
87 | P ₂ O ₅
MgO | 105
52 | K ₂ O 612 | N
CaO | 629
381 | P2O5
MgO | 167
129 | K ₂ O 968 | | 200 | N
CaO | 400
100 | P ₂ O ₅
MgO | 120
60 | K ₂ O 700 | N
CaO | 710
427 | P ₂ O ₅
MgO | 189
146 | K ₂ O 1096 |