



Get to know potassium nitrate in potato nutrient management

### Potassium nitrate in potato

#### Higher yields & better quality

Through research, KNO<sub>3</sub> has been shown to boost yield by producing more tubers and increasing sizing. Applications of potassium nitrate will also minimize bruising, decrease tuber damage and improve chip color.

#### Stronger plants & tubers

It has been proven that KNO<sub>3</sub> increases plant's natural resistance to diseases and assist with environmental factors such as frost and drought. A fertility program containing potassium nitrate will result in reduced storage losses, enhancement of shipping quality and improved shelf life.

#### Faster Uptake

Nitrate nitrogen and potassium in  $\text{KNO}_3$  are immediately available for direct root uptake by the plant.

Through research, potassium nitrate has been shown to results in higher average weight of harvested tubers over KCl and  $K_2SO_4$ .



# Higher yield of tubers with KNO<sub>3</sub> compared with SOP and MOP



Bester, G.G. y P.C.J Marre, 1990

\* Results represent the average level of 4 potato varieties.

Crop yields can fluctuate each year. Trials consistently show higher yields with the use of potassium nitrate vs other sources such as SOP and MOP even in a low production year. Each cropping year more tubers were produced per plant.



Through research trials it has been shown that no matter what rate of total N is applied, the 80% ratio of nitrate to 20% ammonium produces greater yields.

 $\mathrm{KNO}_3$  is the preferred source of potassium for potatoes, helping the plant to produce a greater number of tubers.



## Higher average weight and number of tubers per plant with KNO3 compared with SOP and MOP

|       | TREATMENT        | AVERAGE WEIGHT<br>OF TUBER (g) |        | MEAN NUMBER OF<br>TUBERS PER PLANT |        | ) |
|-------|------------------|--------------------------------|--------|------------------------------------|--------|---|
| 1-1-1 |                  | Year 1                         | Year 2 | Year 1                             | Year 2 |   |
|       | KNO <sub>3</sub> | 93 a                           | 97 a   | 9.4 a                              | 5.9 a  |   |
|       | KCI              | 74 b                           | 91 a   | 5.8 b                              | 4.5 b  |   |
|       | $K_2SO_4$        | 73 b                           | 71 b   | 5.9 b                              | 5.0 ab |   |

Bester, G.G. y P.C.J Marre, 1990

\* Results represent the average level of 4 potato varieties.

Increased weight per tuber combined with increased tuber counts equals substantial increases to the yield at time of harvest.



## Greatest Specific Gravity was obtained with 80% NO3 and 20% NH4



*Knight, F.H., P.P. Brink, N.J.J Combrink and C.J. van der Walt 2000. Effect of nitrogen source on potato yield and quality in the Western Cape. FSSA Journal 2000* 

Measurement of Specific Gravity (SG) is an expression of density. SG is the most widely accepted measurement of quality. Especially in processing potatoes. There is a very high correlation between the SG of a tuber and starch content and also percentage of dry matter or total solids.